Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yasuhiro Fuma and Masahiro Ebihara*

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan

Correspondence e-mail:
ebihara@apchem.gifu-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.035$
$w R$ factor $=0.073$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetra- μ-acetamidato- $\kappa^{4} N: O ; \kappa^{4} O: N$-diaquadirhodium(II,III) perrhenate

In the title compound, $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ReO}_{4}\right]$, the cation lies on an inversion center and the anion on a twofold axis. The cations are connected two-dimensionally by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding. Hydrogen bonds to perrhenate ions connect the two-dimensional sheets.

Comment

Paddlewheel complexes with amidate ligands are useful modules in making assembled structures, because they have hydrogen-donating NH and hydrogen-accepting O sites in addition to the axial coordination sites. We have studied assembled complexes of acetamidate-bridged paddlewheel dirhodium complexes with halide linkers: one-dimensional zigzag chain structures of $\left[\mathrm{Rh}_{2}(\operatorname{acam})_{4}(\mu-X)\right] \cdot n \mathrm{H}_{2} \mathrm{O}($ Hacam $=$ acetamide; $X=\mathrm{Cl}, \mathrm{Br}$ and $\mathrm{I} ; n=0,2,3$ and 7) (Yang et al., 2000, 2001), a two-dimensional honeycomb structure of $\left[\left\{\mathrm{Rh}_{2}-\right.\right.$ (acam) $\left.\left.)_{4}\right\}_{3}\left(\mu_{3}-\mathrm{Cl}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Takazaki et al., 2003), and a threedimensional diamondoid structure of $\left[\left\{\mathrm{Rh}_{2}(\mathrm{acam})_{4}\right\}_{2}\left(\mu_{4}-\mathrm{I}\right)\right]$-$6 \mathrm{H}_{2} \mathrm{O}$ (Fuma et al., 2004). In all these structures, direct hydrogen bonds between the NH and O atoms of the amidate ligands play an important role in constructing the structures. In the structure of $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{Rh}_{2}(\text { acam })_{4}(\mu\right.$ $\left.\left.M \mathrm{Cl}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(M=\mathrm{Pd}$ and Pt ; Yang et al., 2006), there are anionic chains of $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mu-\mathrm{MCl}_{4}\right)\right]^{-}$and $\left[\mathrm{Rh}_{2}(\text { acam })_{4}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$that participate in hydrogen-bonding networks using the bridging amidate and axial aqua ligands. We recently reported variation of hydrogen-bonding networks in hexafluorophosphate salts of amidate-bridged dirhodium complexes with axial aqua ligands (Ebihara \& Fuma, 2006). In this paper, we report a hydrogen-bonding network in $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ReO}_{4}\right]$, (I).

Received 13 July 2006
Accepted 14 July 2006

Figure 1
The cation and anion of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (ii) $1-x, y, \frac{3}{2}-z$].

Figure 2
Crystal structure of (I). Methyl H atoms have been omitted for clarity. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds as dotted lines [symmetry codes: (iii) $\frac{1}{2}-x$, $\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $x, 1-y,-\frac{1}{2}+z$; (v) $\left.\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$.

The structure of (I) is shown in Fig. 1. There are one independent Rh_{2} (acam) 4 unit that lies on an inversion center ($1 / 4,1 / 4,1 / 2$) and one independent perrhenate ion of which the Re atom lies on a twofold axis $\left(\frac{1}{2}, y, \frac{3}{4}\right)$. The bond distances around each Rh atom, including the metal-metal bond
(Table 1), are similar to the corresponding ones in $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$ (Baranovskii et al., 1986), $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$ and $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Ebihara \& Fuma, 2006). The dirhodium complexes and the perrhenate ions form a hydrogen-bonded network (Fig. 2 and Table 2). The cation donates an H atom of the axial aqua ligand (O 3) to the amidate oxygen atom ($\mathrm{O} \mathrm{i}^{\mathrm{iii}}$) [symmetry code: (iii) $\left.\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right]$. The complex also donates the amino H atom of N 1 to the amidate O atom ($\mathrm{O} 2^{\text {iii }}$). Atoms O 1 and O 2 accept these hydrogen bonds from $\mathrm{O} 3^{\mathrm{v}}$ and $\mathrm{N} 2^{\mathrm{v}}$ [symmetry code: (v) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$]. The resulting twodimensional sheet structure is extended parallel to the $b c$ plane. This sheet structure is very similar to that in $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and different from those in $\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$ and $\quad\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{PF}_{6}$ (Ebihara \& Fuma, 2006). Perrhenate ions are located between the sheets. Aqua ligand O3 hydrogen bonds to perrhenate O5 atom and amidate atom N 2 donates an H atom to another perrhenate ion $\left(\mathrm{O}^{\mathrm{iv}}\right)$ [symmetry code: (iv) $x, 1-y,-\frac{1}{2}+z$]. These hydrogen bonds of the perrhenate ions connect the hydrogen-bonded sheets.

Experimental

$\left[\mathrm{Rh}_{2}(\text { acam })_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was synthesized according to the published method (Doyle et al., 1990). $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$ was prepared by the method of Baranovskii et al. (1986). An aqueous solution $(10 \mathrm{ml})$ of $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}(15 \mathrm{mg}, 0.026 \mathrm{mmol})$, $\left[\mathrm{Rh}_{2}(\mathrm{acam})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad(16 \mathrm{mg}, \quad 0.028 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{ReO}_{4}$ $(20 \mathrm{mg}, \quad 0.075 \mathrm{mmol})$ was left for 7 d at 323 K to obtain $\left[\left\{\mathrm{Rh}_{2}(\operatorname{acam})_{4}\right\}_{2}\left(\mu_{4}-\mathrm{ReO}_{4}\right)\right]$ (Fuma \& Ebihara, 2006) with a small number of crystals of (I).

Crystal data

$\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ReO}_{4}\right]$
$M_{r}=724.30$
Monoclinic, C2/c
$a=19.718$ (2) A
$b=11.578$ (1) \AA
$c=8.2521$ (9) \AA
$\beta=97.664(5)^{\circ}$
$V=1867.1(3) \AA^{3}$

Data collection

Rigaku/MSC Mercury CCD
diffractometer
ω scans
Absorption correction: integration
(NUMABS; Higashi, 1999)
$T_{\text {min }}=0.120, T_{\text {max }}=0.738$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.073$
$S=1.15$
2139 reflections
123 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.577 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=8.27 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Plate, brown } \\
& 0.15 \times 0.07 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

7434 measured reflections 2139 independent reflections 2037 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0302 P)^{2}\right. \\
&\quad+7.291 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.53 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00091
\end{aligned} \text { (11) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Rh1-Rh1 ${ }^{\mathrm{i}}$	$2.4053(7)$	$\mathrm{Rh} 1-\mathrm{N} 1$	$1.979(4)$
$\mathrm{Rh}^{\mathrm{i}}-\mathrm{O} 1^{1}$	$2.040(3)$	$\mathrm{Rh} 1-\mathrm{N} 2$	$1.971(4)$
$\mathrm{Rh} 1-\mathrm{O}{ }^{\mathrm{i}}$	$2.033(3)$	$\mathrm{Re} 1-\mathrm{O} 4$	$1.713(5)$
$\mathrm{Rh} 1-\mathrm{O} 3$	$2.237(4)$	$\mathrm{Re} 1-\mathrm{O} 5$	$1.718(4)$

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H10 $\cdots \mathrm{O}^{\text {iii }}$	$0.76(8)$	$2.10(8)$	$2.841(6)$	$168(8)$
O3-H2 $^{\text {in }} \cdots$ O $^{\text {iii }}$	$0.73(7)$	$2.06(8)$	$2.717(6)$	$150(8)$
N1-H1	0.86	2.33	$3.139(6)$	158
N2-H2 \cdots O $^{\text {iv }}$	0.86	2.37	$3.122(6)$	147

Symmetry codes: (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x,-y+1, z-\frac{1}{2}$.
Aqua H atoms were located in difference syntheses and their positional parameters are refined $[\mathrm{O}-\mathrm{H}=0.73$ (7) and 0.76 (8) $\AA]$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The remaining H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$, and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, where $x=1.5$ for methyl H and $x=1.2$ for all other H atoms. The highest peak and deepest hole are located 0.85 and $0.81 \AA$, respectively, from atom Re1.

Data collection: CrystalClear (Molecular Structure Corporation \& Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

This work was supported by the Research Foundation for Electrotechnology of Chubu.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baranovskii, I. B., Golubnichaya, M. A., Dikareva, L. M., Rotov, A. V., Shchelokov, R. N. \& Porai-Koshits, M. A. (1986). Russ. J. Inorg. Chem. 31, 1652-1656.
Doyle, M. P., Bagheri, V., Wandless, T. J., Harn, N. K., Brinker, D. A., Eagle, C. T. \& Loh, K.-L. (1990). J. Am. Chem. Soc. 112, 1906-1912.

Ebihara, M. \& Fuma, Y. (2006). Acta Cryst. C62, m284-m289.
Fuma, Y. \& Ebihara, M. (2006). Chem. Lett. To be submitted.
Fuma, Y., Ebihara, M., Kutsumizu, S. \& Kawamura, T. (2004). J. Am. Chem. Soc. 126, 12238-12239.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.
Molecular Structure Corporation \& Rigaku (2001). CrystalClear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Takazaki, Y., Yang, Z. Y., Ebihara, M., Inoue, K. \& Kawamura, T. (2003). Chem. Lett. 32, 120-121.
Yang, Z. Y., Ebihara, M. \& Kawamura, T. (2006). Inorg. Chim. Acta, 349, 24652471.

Yang, Z. Y., Ebihara, M., Kawamura, T., Okubo, T. \& Mitani, T. (2001). Inorg. Chim. Acta, 321, 97-106.
Yang, Z. Y., Fujinami, T., Ebihara, M., Nakajima, K., Kitagawa, H. \& Kawamura, T. (2000). Chem. Lett. pp. 1006-1007.

